Abstract

ObjectiveSubglottic stenosis (SGS) is characterized by a narrowing of the trachea near the cricotracheal junction and impairs breathing. SGS may also adversely affect voice quality, but for reasons that are not fully understood. The purpose of this study is to provide experiment-based data concerning the effects on phonation of airway obstruction due to SGS. Study DesignBasic science MethodsA device simulating a SGS of adjustable severity ranging from 36% to 99.8% obstruction was created. Self-oscillating synthetic VF models were mounted downstream of the device and data were acquired to evaluate the effects of the obstruction on phonatory response. ResultsOnset pressures were relatively insensitive to obstructions of up to approximately 80% to 90% reductions in subglottic airway area and sharply increased thereafter. Flow rate (under conditions of constant pressure), flow resistance, and fundamental frequency all exhibited similar degrees of sensitivity to SGS obstruction as onset pressure. High-frequency noise became significant by 80% obstruction. Glottal area appeared to be less sensitive, not being affected until approximately 90% obstruction. ConclusionsConsistent with previous computational studies, this study found that aerodynamic, acoustic, and vibratory responses of self-oscillating VF models were largely unaffected by SGS until approximately 80% to 90% obstruction, and significantly affected at higher obstructions. This suggests that Grades I and II stenoses are unlikely to introduce subglottic airway aerodynamic disturbances that are sufficient in and of themselves to significantly alter phonatory output. The SGS model introduces a framework for future benchtop studies involving subglottic and supraglottic airway constrictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.