Abstract

The aerodynamic forces and flow structures of a NACA 0012 airfoil in some unsteady motions at small Reynolds number (Re=100) are studied by numerically solving the Navier-Stokes equations. These motions include airfoil acceleration and deceleration from one translational speed to another and rapidly pitching up in constant freestream (equivalent to pitching up during translational motion at constant speed). It is shown that at small Reynolds number (Re=100), when the airfoil is performing fast acceleration or deceleration from one speed to another, a large aerodynamic force can be generated during and for a time period after the acceleration or deceleration; a large aerodynamic force can also be generated when the airfoil is performing a fast pitching motion in a constant freestream. In these fast unsteady motions, an airfoil in low Re flow can produce a large aerodynamic force as effective as in large Re flow, or the effect of unsteady motion dominates the Reynolds number effect. During the fast unsteady motion of the airfoil, new layers of strong vorticity are formed near the upper and lower surfaces of the airfoil under the previously existing thick vorticity layers, and it is the generation and motion of the new vorticity layers that is mainly responsible for the generation of the large aerodynamic force; the large-scale structure and movement of the newly produced vorticity layers are similar to that of high Re flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call