Abstract

AbstractA particle‐laden flow in a supersonic micronozzle is studied using a one‐way coupled two‐fluid approach. The carrier gas parameters are obtained from the numerical solution of the Navier‐Stokes equations, rarefaction effects are taken into account by imposing velocity slip and temperature jump boundary conditions on the nozzle walls. Under conditions considered, the flow around particles is transitional and free‐molecular. As a result of numerical solution of the dispersed‐phase equations in Lagrangian variables, two types of particle motion in the expanding part of the nozzle are detected: particle spraying and particle accumulation. The particle focusing effect is most pronounced for particles of about 1–2 µm in size. The particle number density fields contain singularities appearing on the envelopes of particle trajectories. However, the model of non‐colliding particles remains valid because the mean distance between the particles near the singularities remains much greater than the particle size. The aerodynamic scheme of aerosol particle focusing proposed may be used in various technologies (microthrusters, needle‐free drug injection, microfabrication, etc.). (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.