Abstract
PurposeSustainable urban rail transit requires noise barriers. However, these barriers’ durability varies due to the differing aerodynamic impacts they experience. The purpose of this paper is to investigate the aerodynamic discrepancies of trains when they meet within two types of rectangular noise barriers: fully enclosed (FERNB) and semi-enclosed with vertical plates (SERNBVB). The research also considers the sensitivity of the scale ratio in these scenarios.Design/methodology/approachA 1:16 scaled moving model test analyzed spatiotemporal patterns and discrepancies in aerodynamic pressures during train meetings. Three-dimensional computational fluid dynamics models, with scale ratios of 1:1, 1:8 and 1:16, used the improved delayed detached eddy simulation turbulence model and slip grid technique. Comparing scale ratios on aerodynamic pressure discrepancies between the two types of noise barriers and revealing the flow field mechanism were done. The goal is to establish the relationship between aerodynamic pressure at scale and in full scale.FindingsThe aerodynamic pressure on SERNBVB is influenced by the train’s head and tail waves, whereas for FERNB, it is affected by pressure wave and head-tail waves. Notably, SERNBVB's aerodynamic pressure is more sensitive to changes in scale ratio. As the scale ratio decreases, the aerodynamic pressure on the noise barrier gradually increases.Originality/valueA train-meeting moving model test is conducted within the noise barrier. Comparison of aerodynamic discrepancies during train meets between two types of rectangular noise barriers and the relationship between the scale and the full scale are established considering the modeling scale ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.