Abstract
The characteristics of inertial drift eliminators of wet cooling towers are studied parametrically for their blade shapes, orientation with respect to gravity, solidity ratios, blade sizes, approaching air speed, and drift spectrum. The fundamental behavior of drift eliminators is revealed by nondimensional parameters. A method for the optimum design of an eliminator considering minimum cost versus performance is developed. This methodology can be integrated into the optimum design of the whole cooling system. An example is shown for this design approach. Suggestions on the design to improve the drainage of the collected water are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.