Abstract

This paper illustrates the methodology and the experimental verification of the design of a 1/75 aero-elastic scaled rotor of the DTU 10 MW reference wind turbine for wind tunnel tests. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient, with respect to the full scale reference. From the Selig low-Reynolds airfoils database, the SD7032 one was chosen for this purpose and a corresponding constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30−250×103 and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist, in order to match at least the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre autoclave process was CNC manufactured based on B-Splines CAD definition of the external geometry given as an output of the design procedure. Wind tunnel tests at were carried out Politecnico di Milano on the whole 1/75 wind turbine scale model, confirming the successful aerodynamic design and manufacturing approaches. The experimental modal analysis carried out to verify the structural consistency of the scaled blade is also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.