Abstract

The first part of this paper presents the design of a radial outflow steam turbine for a micro steam power pump block of 200 kW capacity based on a unique Ljungstrom turbine design methodology. Computational fluid dynamic (CFD) simulations were carried out for the 18-stage radial outflow steam turbine at design and off-design points, and results proved the validity of the undertaken design methodology. The design point CFD simulation showed a total to total efficiency of 74.4% for the steam turbine. Specific speed and specific diameter values for the radial outflow steam turbine stages were calculated and superimposed on the Balje's specific speed-specific diameter chart, thus identifying a unique radial outflow turbine zone in the chart. The second part of this paper presents a new design methodology based on specific speed and specific diameter values for designing a supercritical carbon dioxide radial outflow turbine for a 1 MW supercritical carbon dioxide (SCO2) Brayton cycle. CFD simulations were carried out at design and off-design points for the SCO2 turbine. The total to total efficiency from the CFD simulation at the design point for the SCO2 turbine is 84.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.