Abstract
The purpose of the present study is to develop a small-scale horizontal-axis wind turbine (HAWT) suitable for the local wind conditions of Tainan, Taiwan. The wind energy potential was first determined through the Weibull wind speed distribution and then was adapted to the design of the turbine blade. Two numerical approaches were adopted in the design and analysis of the HAWT turbine blades. The blade element momentum theory (BEMT) was used to lay out the shape of the turbine blades (S822 and S823 airfoils). The geometry of the root region of the turbine blade was then modified to facilitate integration with a pitch control system. A mathematical model for the prediction of aerodynamic performance of the S822 and S823 airfoils, in which the lift and drag coefficients are calculated using BEMT equations, was then developed. Finally, computational fluid dynamics (CFD) was used to examine the aerodynamic characteristics of the resulting turbine blades. The resulting aerodynamic performance curves obtained from CFD simulation are in agreement with those obtained using BEMT. It is also observed that separation flow occurred at the turbine blade root at the tip speed ratios of 5 and 7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.