Abstract

Abstract Aerodynamic contrails form when air flows across the wings of subsonic aircraft in cruise. During a short adiabatic expansion phase, high supersaturations trigger burstlike homogeneous ice formation on ambient liquid aerosol particles within a wing depth. Small particles freeze first because they equilibrate most rapidly. Ambient temperature is the key determinant of nascent aerodynamic contrail properties. Only above ∼232 K do they become visible (but optically thin). These temperatures are at the high end of those prevailing at tropical upper tropospheric flight levels of subsonic aircraft. In colder midlatitude conditions, aerodynamic contrails stay invisible and the very small ice particles formed quickly evaporate when exposed to small subsaturations, explaining why the formation of these contrails is rarely observed. After formation, aerodynamic contrails develop into contrail cirrus if air is supersaturated with respect to ice. This type of anthropogenic ice cloud adds to contrail cirrus derived from jet exhaust contrails and may become particularly important in the future because air traffic is projected to increase significantly in tropical and subtropical regions. Regardless of whether aerodynamically induced ice formation leads to persistent contrail cirrus, cruising aircraft may act as sources of potent heterogeneous ice nuclei by preactivating the insoluble fraction in atmospheric particle populations. Aerodynamic contrails and aerodynamically induced preactivation should therefore be studied experimentally and with global models to explore their potential to induce climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.