Abstract

The consistency of different aerodynamic formulations applied to the analysis of a modern multi-megawatt horizontal axis wind turbine rotor is investigated. The proposed code-to-code comparison involves specific implementations of a hierarchy of solvers based on Blade Element Momentum Theory (AEOLIAN), Actuator Line Modelling (OpenFOAM), free-wake Panel Method (FUNAERO) and blade-resolved Computational Fluid Dynamics (OpenFOAM ). The analysis addresses local and integral aeroloads and flow physical quantities concerning the state-of-the-art IEA 15 MW reference wind turbine in axial uniform flow conditions. The proposed solvers predict consistent rotor performance and blade aeroloads (also in line with data from of IEA Task 47). However, differences emerge close to blade root, where blade-resolved CFD reveals a significant flow separation on the suction side. Furthermore, scattering of induction factors computations is observed, especially in the axial direction. Different methodologies and numerical setup used in blade-resolved simulations allow achieving physically-consistent induction values, especially at blade tip. Finally, flow-field predictions by Computational Fluid Dynamics (CFD) and Panel Method are consistent upstream and close to the disk downstream (except where significant flow separation occurs), whilst a more detailed study on the effect of extending wake refinement zone in CFD simulation is advisable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.