Abstract

This work deals with the experimental study of the flow in a Wells turbine submitted to an unsteady and bi-directional airflow. The investigations were carried out on an experimental set-up that can simulate the real operating conditions of a wave energy conversion device using a two-dimensional hot-wire anemometer probe to analyse the flow field upstream and downstream of the turbine during its non-stationary operation. In addition to local measurements, the position of the piston that simulates the wave motion, the driving torque and the turbine rotational speed were also measured. These surveys allowed determination of the turbine instantaneous performances by analysing the aerodynamic flow characteristic at mid-span in the blade-to-blade plane downstream of the rotor. The flow distribution was obtained for the phase of inflow and outflow at different values of rotational speed which was kept constant during data acquisition.The results showed asymmetric behaviour for the two phases of intake and exhaust stroke of the piston and during acceleration and deceleration of the flow. The real entity of the hysteresis phenomenon that arose during the phases of acceleration and deceleration of the unsteady flow was evaluated considering velocity distribution in close proximity of the rotor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.