Abstract
An extensive aeroacoustic and aerodynamic investigation of an innovative regional turboprop aircraft has been carried out experimentally and numerically under the framework of two research projects funded by the European Union through the CleanSky Research Programme. Experimental tests have been performed in the RUAG Large Subsonic Wind Tunnel in Switzerland and CFD results have been validated against the experimental data. The A/C high-lift performance, stability and control derivatives, aerodynamic noise sources, and low-noise solutions for high-lift devices, have been investigated under representative conditions in cruise, take-off, and landing configurations. The aerodynamic and aeroacoustic investigation has been carried out parametrically, in terms of several reference quantities, including the propellers’ thrust and rpm, the speed of the air-flow, the incidence angle of the aircraft and the position of the microphone array used for the acoustic investigation. The present paper gives an overview of relevant results obtained for selected aircraft configurations which have been tested in the wind tunnel and analyzed through CFD simulations. The focus lies on the overall aerodynamic characterization and on the noise sources identification carried out using standard beamforming techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.