Abstract

The modular transonic vortex interaction configuration was developed at the NASA Langley Research Center to investigate the aerodynamic characteristics of a generic fighter incorporating a chined fuselage and delta wing. Previous experiments showed that the fuselage and leading-edge vortex interactions are detrimental to the vehicle's aerodynamic characteristics for angles of attack greater than 23 deg at low angles of sideslip. This is largely due to abrupt asymmetric vortex breakdown, which leads to pronounced pitch-up and significant nonlinearities in lateral stability that could result in roll departure. An improved understanding of the exact origins of this nonlinear behavior would improve future fighter design, and predictive capabilities of such nonlinearities could drastically reduce the cost associated with flight testing new or modified aircraft. The nonlinearities experienced by the modular transonic vortex interaction configuration at a 30 deg angle of attack, Reynolds number of 2.68 x 10 6 , and Mach number of 0.4 are computed using delayed detached-eddy simulation. Computational predictions of rolling moment compare very well with previous wind-tunnel experiments at the same conditions, including the abrupt nonlinear increase in rolling moment as a function of sideslip angle at small sideslip angles. A detailed investigation of the computational fluid dynamic data confirms that this nonlinearity is due to a rapid change in the flowfield structures from symmetric to asymmetric vortex breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.