Abstract

The market demand on business jets is growing fast. The Blended-Wing-Body (BWB) configuration is adapted to design high-efficient green business jet. Conceptual study of the BWB-type transonic business jet is carried out. The BWB-type business jet expected to provide a better cabin space and aerodynamic performance to compare with the conventional business jet. An aerodynamic analysis of the BWB-type transonic business jet is performed to understand the flow field around the aircraft at a high subsonic flight speed. The commercial CFD (Computational Fluid Dynamics) code, ANSYS Fluent, is used for aerodynamic analysis. A parametric study is carried out to analyze the relation between the design parameters and aerodynamic characteristics. The commercial PIDO (Process Integration and Design Optimization) tool, PIAnO, is used to perform a parametric study. As a result of parametric study, the sensitivity of the design parameters is analyzed and a proportion of aerodynamic influence of each design parameter is presented. One of the sample design configurations for detailed aerodynamic analysis is selected. As a result of the aerodynamic analysis, aerodynamic coefficients and pressure coefficient distribution around the BWB-type business jet are presented. Increase of AOA and Mach number produces stronger shock and drag coefficient is increased due to wave drag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call