Abstract

Previous studies have demonstrated that exercise improves cognitive function in Alzheimer's disease mice but the exact mechanism needs further studies. This research aimed to study the effects of aerobic treadmill exercise on epidermal growth factor (EGF) levels and learning and memory in d-galactose-induced aging in a mouse model. Forty male Kunming mice were analyzed in this study and randomly divided into 4 groups: control (C group), aerobic exercise (AE group), d-galactose (D-gal group), and d-galactose + aerobic exercise (D-gal + AE group). The C and AE groups received a daily mid-scapular subcutaneous injection of .9% saline for 40days. Mice in the D-gal and D-gal + AE groups were subcutaneously injected with d-galactose (1.25mg/kg) once daily for 40days. The mice in the AE group and D-gal + AE group completed 40days of aerobic treadmill exercise. Learning and memory were evaluated by step-down tests. Specifically, 24h after the behavioral test, blood was collected and brain tissue was extracted, and superoxide dismutase (SOD) and acetylcholinesterase activities were detected. The neurons in the CA1 and CA3 regions of the hippocampus were counted by Nissl staining. The number of EGF-positive cells was observed by immunohistochemical methods. In the learning test, the reaction time in the D-gal group increased significantly (P < .05), while the error numbers in the D-gal group tended to decrease compared with AE, D-gal + AE, and C groups. In the memory test, the latency of mice in the D-gal group was lower, while the error in this group was higher than in the other groups (P < .05). The activities of SOD and acetylcholinesterase were lower in the D-gal group than in the other groups (P < .05). The number of EGF-positive cells and neurons in the hippocampal CA1 and CA3 regions in the D-gal + AE group was higher compared to those in the D-gal group (P < .05), and lower in groups with mice that were not injected with d-galactose. Aerobic treadmill exercise inhibited SOD activity, increased EGF-positive cells, and decreased neuronal death and apoptosis, thereby improving learning and memory in the mouse model of d-galactose-induced aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call