Abstract

DNT (2,4-dinitrotoluene), a volatile impurity in military-grade 2,4,6-trinitrotoluene (TNT)-based explosives, is a potential tracer for the detection of buried landmines and other explosive devices. We have previously described an Escherichia coli bioreporter strain engineered to detect traces of DNT and have demonstrated that the yqjF gene promoter, the sensing element of this bioreporter, is induced not by DNT but by at least one of its transformation products. In the present study, we have characterized the initial stages of DNT biotransformation in E. coli, have identified the key metabolic products in this reductive pathway, and demonstrate that the main DNT metabolite that induces yqjF is 2,4,5-trihydroxytoluene. We further show that E. coli cannot utilize DNT as a sole carbon or nitrogen source and propose that this compound is metabolized in order to neutralize its toxicity to the cells.IMPORTANCE The information provided in this article sheds new light both on the microbial biodegradability of nitroaromatic compounds and on the metabolic capabilities of E. coli By doing so, it also clarifies the pathway leading to the previously unexplained induction of the E. coli yqjF gene by 2,4-dinitrotoluene, an impurity that accompanies 2,4,6-trinitrotoluene (TNT)-based explosives. Our improved understanding of these processes will serve to molecularly enhance the performance of a previously described microbial bioreporter of buried landmines and other explosive devices, in which the yqjF gene promoter serves as the sensing element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.