Abstract

Schizothorax chongi (locally known as Xilian Yu), a fish species commonly found in Yalong River, has been declining quickly in recent years. One of the important factors, among many, is the interruption of the free flowing river by dams. To obtain data that can be applied to the design of a fishway for S. chongi and other species in the community, a laboratory study of juvenile S. chongi’s swimming energetics and kinematics was conducted in a flume-type respirometer equipped with a high speed video camera system to record swimming behavior. The aerobic metabolic rate, tail beat frequency (TBF) and tail beat amplitude (TBA) were measured during steady swimming at varying flow rates for fish of similar mass. A power function accurately describes the relationship between oxygen consumption rate (MO2) and swimming speed (U). The estimated standard metabolic rate (SMR) calculated from the power function was 445.34 mg O2 kg−1 h−1, similar to the experimental result of 431.5 mg O2 kg−1 h−1. The relationship between cost of transport (COT) and U was, characteristically, inverse bell-shaped, with COTmin = 44.6 J kg−1 m−1 at Uopt = 5.5 body lengths per second (bl s−1). There was a significant positive linear correlation between TBF and U. The slope of the correlation (0.33) was lower than for many other species, implying that S. chongi swim efficiently. The TBA, ranging from 0.15 to 0.2 bl, was found to be independent of U. Kinematic analyses indicates that S. chongi primarily depends on the caudal fin to generate forward thrust and employs three velocity-dependent swimming gaits. This investigation provides data on the swimming ability of S. chongi that will add to the basic science required for fishway design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call