Abstract

We united theoretical predictions of the factors responsible for the evolutionary significance of the temperature-size rule (TSR). We assumed that (i) the TSR is a response to temperature-dependent oxic conditions, (ii) body size decrease is a consequence of cell shrinkage in response to hypoxia, (iii) this response enables organisms to maintain a wide scope for aerobic performance, and (iv) it prevents a decrease in fitness. We examined three clones of the rotifer Lecane inermis exposed to three experimental regimes: mild hypoxia, severe hypoxia driven by too high of a temperature, and severe hypoxia driven by an inadequate oxygen concentration. We compared the following traits in normoxia- and hypoxia-exposed rotifers: nuclear size (a proxy for cell size), body size, specific dynamic action (SDA, a proxy of aerobic metabolism) and two fitness measures, the population growth rate and eggs/female ratio. The results showed that (i) under mildly hypoxic conditions, our causative reasoning was correct, except that one of the clones decreased in body size without a decrease in nuclear size, and (ii) in more stressful environments, rotifers exhibited clone- and condition-specific responses, which were equally successful in terms of fitness levels. Our results indicate the importance of the testing conditions. The important conclusions were that (i) a body size decrease at higher temperatures enabled the maintenance of a wide aerobic scope under clone-specific, thermally optimal conditions, and (ii) this response was not the only option to prevent fitness reduction under hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.