Abstract

The sucABCD genes of Escherichia coli encode subunits for two enzymes of the tricarboxylic acid (TCA) cycle, alpha-ketoglutarate dehydrogenase (sucAB) and succinyl coenzyme A synthetase (sucCD). To examine how these genes are expressed in response to changes in oxygen and carbon availability, a set of sucA-lacZ, sucC-lacZ, sdhCDAB-sucA-lacZ, and sdhC-lacZ fusions were constructed and analyzed in vivo. While the expression of a sucA-lacZ fusion was low under all cell growth conditions tested, the expression of the sucA gene from the upstream sdhC promoter was considerably higher and varied by up to 14-fold depending on the carbon substrate used. Expression of the sdhCDAB-sucA-lacZ fusion varied by fourfold in response to oxygen. In contrast, no expression was seen from a sucC-lacZ reporter fusion, indicating that no promoter immediately precedes the sucCD genes. Taken together, these findings demonstrate that the oxygen and carbon control of sucABCD gene expression occurs by transcriptional regulation of the upstream sdhC promoter. The weaker sucA promoter provides an additional low constitutive level of sucABCD gene expression to supplement transcription from the sdhC promoter. The negative control of sucABCD gene expression seen under anaerobic conditions, like that for the sdhCDAB genes, is provided by the arcA and fnr gene products. These findings establish that the differential expression of eight genes for three of the TCA cycle enzymes in E. coli is controlled from one regulatory element.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.