Abstract

Performing radical polymerizations under ambient conditions is a significant challenge because molecular oxygen is an effective radical quencher. Here we show that the facultative electrogen Shewanella oneidensis can control metal-catalyzed living radical polymerizations under apparent aerobic conditions by first consuming dissolved oxygen via aerobic respiration, then directing extracellular electron flux to a metal catalyst. In both open and closed containers, S. oneidensis enabled living radical polymerizations without requiring the pre-removal of oxygen. Polymerization activity was closely tied to S. oneidensis anaerobic metabolism through specific extracellular electron transfer (EET) proteins and was effective for a variety of monomers using low (ppm) concentrations of metal catalysts. Finally, polymerizations survived repeated challenges of oxygen exposure and could be initiated using lyophilized or spent (recycled) cells. Overall, our results demonstrate how the unique ability of S. oneidensis to use both oxygen and metals as respiratory electron acceptors can be leveraged to address salient challenges in polymer synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.