Abstract
AbstractHerein we present a new strategy for the oxidative synthesis of formamides from various types of amines and bioderived formyl sources (DHA, GLA and GLCA) and molecular oxygen (O2) as oxidant on g‐C3N4 supported Cu catalysts. Combined characterization data from EPR, XAFS, XRD and XPS revealed the formation of single CuN4 sites on supported Cuphen/C3N4 catalysts. EPR spin trapping experiments disclosed ⋅OOH radicals as reactive oxygen species and ⋅NR1R2 radicals being responsible for the initial C−C bond cleavage. Control experiments and DFT calculations showed that the successive C−C bond cleavage in DHA proceeds via a reaction mechanism co‐mediated by ⋅NR1R2 and ⋅OOH radicals based on the well‐equilibrated CuII and CuI cycle. Our catalyst has much higher activity (TOF) than those based on noble metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.