Abstract

Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can make bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5 -oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 °C achieves the highest xylaric acid yield (64 %). O2 pressure and Pt amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2 , causing some carbon loss; however, such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call