Abstract
β-Hydroxy β-methylbutyric acid (HMB) is expected as a promising therapeutic agent or a supplement. For industrial production of HMB, Pt-catalyzed aerobic oxidation of isoprene glycol is a potent synthetic method. However, the previous report using Pt-Bi catalyst supported on active carbon suffered from low tolerance to high substrate concentration conditions, which leads to low volumetric productivity. Herein, we report aerobic oxidation of isoprene glycol using Pt-Bi catalysts supported on ZrO2 or TiO2, showing high tolerance to the high substrate concentration conditions. In addition, these catalysts exhibited high recyclability. Scanning transmission electron microscopy analyses suggested the Pt-Bi species supported on ZrO2 or TiO2 are less likely to aggregate than those supported on activated carbon. Additionally, these metal oxides supported catalysts showed lower metal leaching than the carbon supported catalysts. Besides, the results of the various control experiments indicated the prevention of dehydration of an aldehyde intermediate is important for further improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.