Abstract

AbstractThe N‐hydroxyphthalimide derivatives, F15‐ and F17‐NHPI, bearing a long fluorinated alkyl chain, were prepared and their catalytic performances were compared with that of the parent compound, N‐hydroxyphthalimide (NHPI). The oxidation of cyclohexane under 10 atm of air in the presence of fluorinated F15‐ or F17‐NHPI, cobalt diacetate [Co(OAc)2], and manganese diacetate [Mn(OAc)2] without any solvent at 100 °C afforded a mixture of cyclohexanol and cyclohexanone (K/A oil) as major products along with a small amount of adipic acid. It was found that F15‐ and F17‐NHPI exhibit higher catalytic activity than NHPI for the oxidation of cyclohexane without a solvent. However, for the oxidation in acetic acid all of these catalysts afforded adipic acid as a major product in good yield and the catalytic activity of NHPI in acetic acid was almost the same as those of F15‐ and F17‐NHPI. The oxidation by F15‐ and F17‐NHPI catalysts in trifluorotoluene afforded K/A oil in high selectivity with little formation of adipic acid, while NHPI was a poor catalyst under these conditions, forming K/A oil as well as adipic acid in very low yields. The oxidation in trifluorotoluene by F15‐ and F17‐NHPI catalysts was considerably accelerated by the addition of a small amount of zirconium(IV) acetylacetonate [Zr(acac)4] to the present catalytic system to afford selectively K/A oil, but no such effect was observed in the NHPI‐catalyzed oxidation in trifluorotoluene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call