Abstract

Novel crystalline MoVO oxide was employed as the catalyst in the aerobic oxidation of alcohols to the corresponding carbonyl compounds. Reactions were mainly conducted at 353 K in pure oxygen or air (1 atm). The selectivities for benzaldehydes were more than 95% in all cases. The conversions of benzyl alcohols varied from 10% to 99% depending on the substituent. A Hammett plot gave a moderate ρ-value of −0.249 (r2 = 0.98), suggesting that the reaction processes may involve hydride abstraction. The oxidation of primary alkanols afforded aldehydes, and secondary alcohols were mainly dehydrated to olefins. It was found that the conversion of linear alkanols decreased with the length of alkanols. Kinetic analysis showed that catalytic reaction rate was first-order dependent on the concentrations of substrate and of catalyst. The apparent activation energy was estimated to be 45.7 kJ mol−1. Catalytic reactions took place on the 6- or 7-member rings on the a–b basal plane, where highly dense unsaturated metal cation centers and oxygen anion might serve as catalytic active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.