Abstract

The purpose of this study was to determine whole-body fat oxidation in endurance-trained (TR) and untrained (UNTR) subjects exercising at different intensities in the heat. On 3 occasions, 10 TR cyclists and 10 UNTR healthy subjects (peak oxygen uptake = 60 ± 6 vs. 44 ± 3 mL·kg-1·min-1; p < 0.05) exercised at 40%, 60%, and 80% peak oxygen uptake in a hot, dry environment (36 °C; 25% relative humidity). To complete the same amount of work in all 3 trials, exercise duration varied (107 ± 4, 63 ± 1, and 45 ± 0 min for 40%, 60%, and 80% peak oxygen uptake, respectively). Substrate oxidation was calculated using indirect calorimetry. Blood samples were collected at the end of exercise to determine plasma epinephrine ([EPI]plasma) and norepinephrine ([NEPI]plasma) concentrations. The maximal rate of fat oxidation was achieved at 60% peak oxygen uptake for the TR group (0.41 ± 0.01 g·min-1) and at 40% peak oxygen uptake for the UNTR group (0.28 ± 0.01 g·min-1). TR subjects oxidized absolutely (g·min-1) and relatively (% of total energy expenditure) more fat than UNTR subjects at 60% and 80% peak oxygen uptake (p < 0.05). At these exercise intensities, TR subjects also had higher [NEPI]plasma concentrations than UNTR subjects (p < 0.05). In the heat, whole-body peak fat oxidation occurs at higher relative exercise intensities in TR than in UNTR subjects (60% vs. 40% peak oxygen uptake). Moreover, TR subjects oxidize more fat than UNTR subjects when exercising at moderate to high intensities (>60% peak oxygen uptake).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.