Abstract

Adiponectin regulates endothelial nitric oxide synthase in endothelial cells, and body fat loss by aerobic exercise training promotes adiponectin secretion. Recently, C1q/tumor necrosis factor-related proteins (CTRPs) have been identified as novel adipokines and are paralogs of adiponectin, but the association between exercise training-induced reduction of arterial stiffness and circulating CTRPs levels remains unclear. This study aimed to clarify whether the reduction of arterial stiffness in middle-aged and older adults is associated with the change in serum levels of CTRPs induced by exercise training. A total of 52 middle-aged and older participants were randomly divided into two groups: a training group ( n = 26) and a sedentary control group ( n = 26). Participants in the training group completed 8 wk of aerobic exercise training (60-70% peak oxygen uptake for 45 min, 3 days/wk). The reduction of percent whole body fat, abdominal visceral fat area, and carotid-femoral pulse-wave velocity (cfPWV) was significantly greater in the training group than in the control group ( P < 0.05). Moreover, the increase in serum adiponectin, CTRP3, and CTRP5 from baseline to 8 wk was significantly higher in the training group compared with the control group ( P < 0.05). Additionally, the training-induced change in cfPWV was negatively correlated with the training-induced change in serum adiponectin, CTRP3, and CTRP5 levels ( r = -0.51, r = -0.48, r = -0.42, respectively, P < 0.05), and increased plasma nitrite/nitrate level by exercise training was correlated only with adiponectin levels ( r = 0.41, P < 0.05). These results suggest that the exercise training-induced increase in serum CTRPs levels may be associated with the reduction of arterial stiffness in middle-aged and older adults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.