Abstract

Post-stroke depression (PSD) is one of the most common and serious sequelae of stroke. The pathogenesis of PSD involves both psychosocial and biological mechanisms, and aerobic exercise is a potential therapeutic target. We conducted an in-depth exploration of the protective mechanisms of aerobic exercise in a PSD mouse model. In this study, C57BL/6 mice were used as the research objects, and a PSD mouse model was established by combining middle cerebral artery occlusion and chronic unpredictable mild stimulation. Real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, adeno-associated virus microinjection technology, co-immunoprecipitation, fluorescence in-situ hybridization, and western blotting were performed. A moderate-load treadmill exercise was used for aerobic exercise intervention. The moderate-intensity aerobic exercise training method adopted 0 slopes and treadmill adaptation training for 5 days. We verified the effects of aerobic exercise on the nuclear factor kappa B (NF-κB)/nucleotide-binding oligomerization domain--like receptor protein 3 (NLRP3) inflammasome/5-hydroxytryptamine (5-HT) pathway. Aerobic exercise effectively alleviated the neurological damage caused by PSD (P<0.01). The results from the PSD mouse model in vivo were consistent with those of the cell experiments. Moreover, overexpression of irisin improves depression-like behavior in PSD mice. We confirmed that aerobic exercise is involved in PSD through 5-HT, which inhibits NF-κB/NLRP3 inflammasome initiation through irisin and alleviates mitochondrial damage under stress by reducing calcium overload, thereby inhibiting NLRP3 inflammasome activation. Aerobic exercise reversed the NF-κB/NLRP3 inflammasome/5-HT pathway by upregulating irisin expression to alleviate PSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call