Abstract

Ventilator-induced lung injury (VILI) is a common complication of mechanical ventilation under general anesthesia. Regular aerobic exercise before surgery improves postoperative recovery and reduces postoperative pulmonary complications, but the mechanism driving this protective effect is unclear. To determine how aerobic exercise prevents VILI, we investigated the effects of exercise and mechanical ventilation on the lungs of male mice and the effects of AMPK stimulation (simulating exercise) and cyclic stretching on human lung microvascular endothelial cells (HLMVEC). Sirtuin 1 (Sirt1) knockdown male mice were generated to explore the regulating mechanisms of sirt1 on mitochondrial function in male mice after mechanical ventilation was explored. Western blot, flow cytometry, live cell imaging, and mitochondrial function evaluations were used to determine the protective effects of aerobic exercise in preventing mitochondrial damage in VILI. Mitochondrial function and cell junctions were destroyed by mechanical ventilation in male mice or cyclic stretching in HLMVEC, a model of VILI. However, mitochondrial function and cell junction dysfunction were improved by exercise before mechanical ventilation (male mice) or treatment with AMPK before cyclic stretching (HLMVEC). p66shc, a marker of oxidative stress, was increased, and PINK1, a marker of mitochondrial autophagy, was decreased by mechanical ventilation or cyclic stretching. Sirt1 knockdown increased p66shc and decreased PINK1. Increased sirt1 expression was observed in the exercise and exercise + ventilation groups, suggesting that sirt1 inhibits mitochondrial damage in VILI. Mechanical ventilation induces mitochondrial damage in lung cells and leads to VILI. Regular aerobic exercise before ventilation may prevent VILI by improving mitochondrial function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call