Abstract
Diabetes mellitus (DM) implicates oxidative stress, apoptosis, and inflammation, all of which may contribute liver injury. Aerobic exercise is assured to positively regulate metabolism in the liver. This project was designed to investigate whether and how aerobic exercise improves DM-induced liver injury. Seven-week-old male db/db mice and age-matched m/m mice were randomly divided into a rest control group or a group that received 12 weeks of aerobic exercise by treadmill training (10 m/min). Haematoxylin and eosin (HE) staining, electron microscopy, Oil Red O staining and TUNEL assays were used to evaluate the histopathological changes in mouse liver. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TRIG), cholesterol (CHOL) were analyzed by serum biochemical analysis. Interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and tissue levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were analyzed via ELISA. Nuclear factor E2-associated factor-2 (Nrf2), nuclear factor κB (NF-κB) and JAK2/STAT3 pathway-related proteins were measured by immunofluorescence, Western blotting and q-PCR. F4/80 expression in liver tissues was assessed by immunohistochemistry. In diabetic mice, exercise training significantly decreased the levels of serum TRIG, CHOL, IL-6, TNF-α, ALT and AST; prevented weight gain, hyperglycaemia, and impaired glucose and insulin tolerance. Morphologically, exercise mitigated the diabetes-induced increase in liver tissue microvesicles, inflammatory cells, F4/80 (macrophage marker) levels, and TUNEL-positive cells. In addition, exercise reduced the apoptosis index, which is consistent with the results for caspase-3 and Bax. Additionally, exercise significantly increased SOD activity, decreased MDA levels, activated Nrf2 and decreased the expression of NF-kB, phosphorylated JAK2 and STAT3 proteins in the livers of diabetic mice. This study demonstrated that aerobic exercise reversed liver dysfunction in db/db mice with T2DM by reducing oxidative stress, apoptosis and inflammation, possibly by enhancing Nrf2 expression and inhibiting the JAK2/STAT3 cascade response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.