Abstract

Research has evolved on aerobic granular sludge (AGS) process, but still there are very few studies on the treatment of excess AGS sludge, with almost none considering its aerobic digestion. Here therefore, the aerobic digestibility of typical AGS sludge was assessed. Granules were produced from acetate-based synthetic wastewater (WW) and were subjected to aerobic digestion for 64 d. The stabilization process was monitored over time through physical-chemical parameters, oxygen uptake rates (OUR) and 16S rRNA gene sequencing. The microbial analyses revealed that the cultivated granules were dominated by slow-growing bacteria, mainly ordinary heterotrophic organisms with potential for polyhydroxyalkanoates (PHA) aerobic storage (PHA-OHOs), polyphosphate and glycogen accumulating organisms (PAOs and GAOs), fermentative anaerobes and nitrifiers (AOB and NOB). Differential abundance analysis of the bacterial data (before versus after digestion) discriminated between the most vulnerable microbiome genera and those most resistant to aerobic digestion. Furthermore, modeling of the stabilization process determined that the endogenous decay rate constant (bH) for the heterotrophs present in the granules was notably low; bH = 0.05 d−1 (average), four times less than for common activated sludge (AS), which is rated at 0.2 d−1. For first time, the research reveals another important feature of AGS sludge, i.e. the slow-decaying character of its bacteria (along with their known slow-growing character). This results in slower stabilization, need of bigger digesters and reconsideration of the specific OUR limits in biosolids regulations (SOUR limit of 1.5 mg/gTSS.h), for waste AGS compared to conventional waste AS. The study suggests that aerobic digestion of waste AGS (fully-granulated) could differ from that of conventional AS. Future work is needed on aerobic digestibility of real AGS sludges from municipal and industrial WWs, compared to synthetic WWs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.