Abstract

Ensilage is a commonly used method of preserving energy crops for biogas production. However, aerobic deterioration of silage is an inevitable problem. This study investigated the effect of aerobic deterioration on methane production and microbial community dynamics through anaerobic digestion (AD) of maize stalk silage, following 9days air exposure of silage. After air exposure, hydrolytic activity and methanogenic archaea amount in AD were reduced, decreasing the specific methane yield (SMY); whereas lignocellulose decomposition during exposure improved the degradability of silage in AD and enhanced SMY, partially compensating the dry matter (DM) loss. 29.3% of the DM and 40.7% of methane yield were lost following 0–9days exposure. Metagenomic analysis showed a shift from Clostridia to Bacteroidia and Anaerolineae in AD after silage deterioration; Methanosaetaceae was the dominant methanogenic archaea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.