Abstract

AbstractThe present paper describes the continuous aerobic cultivation of a Pseudomonas strain with toluene as the substrate in a closed chemostat with oxygen or air as the gas phase. Due to the constant supply of a nitrogen‐saturated aqueous medium, nitrogen passes from the liquid phase of the chemostat into the gas phase (head space). This results in an increasing nitrogen content (asymptotic approach to 100%). The concomitant decrease in the partial pressure of the oxygen in the gas phase finally leads to an oxygen limitation for the bacteria in the medium and an incomplete toluene degradation. The critical nitrogen content of the gas phase at which oxygen limitation begins depends on the toluene concentration in the incoming medium. However, when the gas is continuously removed from the head space, the nitrogen content reaches a steady‐state value of less than 100%, depending on the flow rate of the outgoing gas. The oxygen limitation and the associated incomplete toluene degradation can be prevented in this way. The method of gas removal from the head space to avoid oxygen limitation is also applicable when the reactor is supplied with air instead of oxygen. Waste waters contaminated with highly volatile pollutants can thus be biologically decontaminated under aerobic conditions, without shifting the pollution problem from the liquid to the gas phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.