Abstract

Although organophosphate esters (OPEs) degradation has been widely studied, the degradation of their metabolites is always ignored. Triisobutyl phosphate (TiBP), a typical alkyl-OPEs, is of emerging concern because of its potential ecotoxicity in the environment. This study provides comprehensive understanding about the degradation of TiBP and one of its metabolites, diisobutyl phosphate (DiBP) using activated sludge (AS). The results showed that TiBP and DiBP were degraded mainly through hydrolysis, dehydrogenation, and hydroxylation. The degradation kinetics indicated that DiBP had similar transformation rates to its parent TiBP in AS, highlighting the importance of metabolite DiBP study. Dehydrogenase, hydroxylase, phosphotriesterase, phosphodiesterase, and phosphomonoesterase played an important role in contributing to TiBP and its metabolites degradation via enzyme activity analysis. Besides, the expression of genes encoding these enzymes in bacteria and the relative abundance change of bacterial populations indicated that Sphingomonas and Pseudomonas may be the degrading bacteria of TiBP and Pseudomonas may be the main degrading bacteria of DiBP. This study provides new perspectives for metabolite DiBP and its parent TiBP degradation. It highlights that the formation and degradation of metabolites must be considered into the future researches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call