Abstract

The degradation by bacteria has been considered the main process for eliminating nonhalogenated organophosphate esters (OPEs) from wastewater treatment plants (WWTPs), but limited research has reported the biodegradation processes and clarified the microbial-mediated mechanisms for nonhalogenated OPE degradation in WWTPs. The aim of this study was to monitor the biodegradation of the most common nonhalogenated OPEs, namely, tris(2-butoxyethyl) phosphate (TBOEP), tris (n-butyl) phosphate (TNBP) and trisphenyl phosphate (TPHP), under aerobic conditions by sludge cultures from a conventional sewage plant. The microbial cultures were enriched separately with each OPE from activated sludge cultures, and the presence of glucose significantly enhanced degradation of the OPEs during the enrichment. The removal ratios for the three OPEs reached 29.3–89.9% after 5 cycles (25 days) of cultivation, and the first-order degradation kinetics followed the order of TPHP > TBOEP > TNBP, with their half-lives ranging between 12.8 and 99.0 h. Pathways of hydrolysis, hydroxylation, methoxylation, and substitution were confirmed for the aerobic biodegradation of these nonhalogenated OPEs, but only di-alkyl phosphates (DAPs) largely accumulated in culture medium as the most predominant transformation products. Phylotypes in Klebsiella were significantly more abundant during OPE biodegradation than in the initial sludge, which indicated that these microorganisms are associated with the biodegradation of nonhalogenated OPEs in sludge culture. Biodegradation of all investigated nonhalogenated OPEs was associated with a significant reduction in the residual toxicity to Vibrio fischeri, indicating a rather positive ecotoxicological outcome of the aerobic biotransformation processes achieved by the enriched sludge culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call