Abstract

Aerobic cometabolism of chloroform (CF) and 1,1,1-trichloroethane (1,1,1-TCA) was observed by subsurface microorganisms grown on butane. Studies performed in batch incubated microcosms were screened for CF transformation potential using the following cometabolic substrates: ammonia, methane, propane, butane, propene, octane, isoprene, and phenol. CF transformation was observed in microcosms fed ammonia, methane, propane, and butane. The butane microcosms achieved the most effective transformation. The transformation of CF and 1,1,1-TCA was strongly correlated with butane utilization and oxygen consumption. CF transformation ceased in the absence of butane or when oxygen was depleted to low concentrations in the microcosms. No transformation of carbon tetrachloride was observed. With successive additions of CF and butane to the microcosms, complete transformation of CF was achieved at solution concentrations as high as 1 mg/L. High CF concentrations appeared to inhibit butane utilization. Maximum transformation yield (Ty) of 0.01 mg CF trans-formed/mg of butane consumed, were achieved. The results indicate that a monooxygenase enzyme required for butane utilization is likely responsible for the transformation of CF. Chloride measurements demonstrated that CF was completely dechlorinated. Approximately 70% of the chloride in the transformed 1,1,1 -TCA was released into solution, indicating incomplete dechlorination of 1,1,1-TCA. The results indicate that butane is a promising cometabolic substrate for the transformation of chlorinated methanes, chlorinated ethanes, and potentially chlorinated ethenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.