Abstract

A reduction in aerobic capacity and the shortening of telomeres are hallmarks of the ageing process. We examined whether a lower aerobic capacity is associated with shorter TL in skeletal muscle and/or leukocytes, across a wide age range of individuals. We also tested whether TL in human skeletal muscle (MTL) correlates with TL in leukocytes (LTL). Eighty-two recreationally active, healthy men from the Gene SMART cohort (31.4±8.2 years; body mass index (BMI)=25.3±3.3kg/m2), and 11 community dwelling older men (74.2±7.5years-old; BMI=28.7±2.8kg/m2) participated in the study. Leukocytes and skeletal muscle samples were collected at rest. Relative telomere length (T/S ratio) was measured by RT-PCR. Associations between TL, aerobic capacity (VO2 peak and peak power) and age were assessed with robust linear models. Older age was associated with shorter LTL (45% variance explained, P<0.001), but not MTL (P= 0.7). Aerobic capacity was not associated with MTL (P=0.5), nor LTL (P=0.3). MTL and LTL were correlated across the lifespan (rs=0.26, P=0.03). In healthy individuals, age explain most of the variability of LTL and this appears to be independent of individual aerobic capacity. Individuals with longer LTL also have a longer MTL, suggesting that there might be a shared molecular mechanism regulating telomere length.

Highlights

  • Telomeres are highly conserved repetitive DNA sequences that cap chromosomes [1] and are important in maintaining genetic stability by protecting against genetic recombination, end-to-end fusion of the chromosome and cellular degradation [2, 3]

  • We investigated whether telomere length (TL) in human skeletal muscle is associated with TL in leukocytes

  • After adjustment for age, none of the fitness parameters (Supplementary Table 1) or the combined aerobic capacity score were associated with LTL (β= 0.06, P= 0.3; 95% CI= -0.1, 0.2) or MTL (β= 0.08, P= 0.5; 95% CI= -0.1, 0.2) (Figure 1)

Read more

Summary

Introduction

Telomeres are highly conserved repetitive DNA sequences that cap chromosomes [1] and are important in maintaining genetic stability by protecting against genetic recombination, end-to-end fusion of the chromosome and cellular degradation [2, 3]. Somatic cell telomeres shorten with each round of mitotic division until they become too short to divide resulting in cellular senescence [4]. Telomere length (TL) is established early in life [5, 6], and shortens with older age [7, 8]. The length of telomeres varies considerably between individuals of the same chronological age and is indicative of biological age [8]. The inter-individual variability in TL www.aging-us.com is thought to be influenced by genetics, epigenetics and environ-mental factors including oxidative stress, and inflammation [9,10,11,12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.