Abstract
Although 6:2 fluorotelomer sulfonate (6:2 FTS) is a common ingredient in aqueous film-forming foam (AFFF) formulations, its environmental fate at AFFF-impacted sites remains poorly understood. This study investigated the biotransformation of 6:2 FTS in microcosms prepared with soils collected from two AFFF-impacted sites; the former Loring Air Force Base (AFB) and Robins AFB. The half-life of 6:2 FTS in Loring soil was 43.3 days; while >60 mol% of initially spiked 6:2 FTS remained in Robins soil microcosms after a 224-day incubation. Differences in initial sulfate concentrations and the depletion of sulfate over the incubation likely contributed to the different 6:2 FTS biotransformation rates between the two soils. At day 224, stable transformation products, i.e., C4C7 perfluoroalkyl carboxylates, were formed with combined molar yields of 13.8 mol% and 1.2 mol% in Loring and Robins soils, respectively. Based on all detected transformation products, the biotransformation pathways of 6:2 FTS in the two soils were proposed. Microbial community analysis suggests that Desulfobacterota microorganisms may promote 6:2 FTS biotransformation via more efficient desulfonation. In addition, species from the genus Sphingomonas, which exhibited higher tolerance to elevated concentrations of 6:2 FTS and its biotransformation products, are likely to have contributed to 6:2 FTS biotransformation. This study demonstrates the potential role of biotransformation processes on the fate of 6:2 FTS at AFFF-impacted sites and highlights the need to characterize site biogeochemical properties for improved assessment of 6:2 FTS biotransformation behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.