Abstract
Aerobic anoxygenic phototrophs (AAPs) are a group of photoheterotrophic bacteria common in natural waters. Here, AAP abundance and contribution to total bacterial abundance and biomass were investigated to test whether the trophic status of a lake or content of coloured dissolved organic matter (CDOM) play a role in determining AAP distribution and abundance in shallow inland lakes, with special focus on hypertrophic and polyhumic waters. Twenty-six different shallow lakes in Hungary were monitored. AAP abundance and biomass were determined by epifluorescence microscopy. The lakes exhibit a broad range of CDOM (2-7000 mg Pt L-1) and phytoplankton biomass (2-1200 μg L-1 chlorophyll a concentration). Very high AAP abundance (up to 3 × 107 cells mL-1) was observed in polyhumic and hypertrophic shallow lakes. AAP abundance was influenced by phytoplankton biomass and CDOM content, and these effects were interrelated. As determined, 40 μg L-1 chlorophyll a and 52 mg Pt L-1 CDOM are threshold levels above which these effects have a synergistic relationship. Hence, the observed high AAP abundance in some soda pans is a consequence of combined hypertrophy and high CDOM content. AAP contribution was influenced by total suspended solids (TSS) content: the success of AAP cells could be explained by high TSS levels, which might be explained by the decrease of their selective grazing control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.