Abstract

Profenofos insecticide is one of the most broadly used organophosphorus pesticides causing the contamination of soil and groundwater. Since dissolved oxygen concentration in groundwater is limited, this study aimed to investigate profenofos biodegradation and detoxification under aerobic and anoxic conditions using the profenofos-degrading Pseudomonas plecoglossicida strain PF1 (PF1). Anoxic biodegradation under the presence of nitrate was the focus. The results showed that profenofos at 10-150mg/L was degraded under aerobic and anoxic conditions with removal efficiencies of 38-55% and 27-45%, respectively. Kinetic analysis following the Michaelis-Menten model revealed that the maximum substrate degradation rates and the Michaelis constants were 13.07 and 8.92mg/L/d and 92.07 and 84.76mg/L under aerobic and anoxic conditions, respectively. The culture preferred an aerobic environment resulting in better biodegradation performance. During the degradation experiment, 4-bromo-2-chlorophenol and 1,1-dimethylethylphenol were detected as profenofos biodegradation intermediate products. Microbial toxicity, phytotoxicity, and cytogenotoxicity assays showed that the toxicity of the contaminated water significantly decreased after both aerobic and anoxic biodegradation by PF1. The results from this study indicated that PF1 has the potential for bioremediation in a profenofos-contaminated environment under the presence or absence of oxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.