Abstract

α-Ketoglutarate-dependent enzymes catalyze many important biological oxidation/oxygenation reactions. Iron(iv)-oxo intermediates have been established as key oxidants in these oxidation reactions. While most reported model iron(ii)-α-keto acid complexes exhibit stoichiometric reactivity, selective oxidation of substrates with dioxygen catalyzed by biomimetic iron(ii)-α-keto acid complexes remains unexplored. In this direction, we have investigated the ability of an iron(ii) complex [(TpPh,Me)FeII(BF)] (1) (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazolyl)borate and BF = monoanionic benzoylformate) to catalyze the aerobic oxidation of organic substrates. An iron-oxo oxidant, intercepted in the reaction of 1 with O2, selectively oxidizes sulfides to sulfoxides, alkenes to epoxides, and alcohols to the corresponding carbonyl compounds. The oxidant from 1 is able to hydroxylate the benzylic carbon of phenylacetic acid to afford mandelic acid with the incorporation of one oxygen atom from O2 into the product. The iron(ii)-benzoylformate complex oxidatively converts phenoxyacetic acids to the corresponding phenols, thereby mimicking the function of iron(ii)-α-ketoglutarate-dependent 2,4-dichlorophenoxyacetate dioxygenase (TfdA). Furthermore, complex 1 exhibits catalytic aerobic oxidation of alcohols and oxygen atom transfer reactions with multiple turnovers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call