Abstract

In this study, we aim to investigate the low noise flights of owls in terms of aerodynamics. The flow around cross-section of an owl wing, which is known for its nearly silent flight, is numerically analyzed using Computational Fluid Dynamics (CFD). The analysis are based on the parameters of angle of attack and the flight speed. The aerodynamic effects on the acoustic is compared in terms of vorticity and sound pressure level, where the frequency interval for the acoustic data is set to 0-7500Hz. It was seen that the vortical organisations around the airfoils are closely related to the acoustic results. The results show that the increase in both velocity and angle of attack affect the vorticity, thus lead to a rise in sound pressure level. It can be stated that the owl airfoil shape ensures a relatively silent flight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call