Abstract

Ultra-High-Temperature Ceramic (UHTC) materials, because of their high temperature resistance, are suitable as thermal protection systems for re-entry vehicles or components for space propulsion. Massive UHTC materials are characterized by poor thermal shock resistance, which may be overcome using C or SiC fibers in a UHTC matrix (UHTCMC).The University of Naples “Federico II” has a proven experience in the field of material characterization in high-enthalpy environments. A hypersonic arc-jet facility allows performing tests in simulated atmospheric re-entry conditions. The Aerospace Propulsion Laboratory is employed for testing rocket components in a representative combustion environment. Ad-hoc computational models are developed to characterize the flow field in both facilities and perform thermal analysis of solid samples.Current research programs are related to a new-class of UHTCMC materials, for rocket nozzles and thermal protection systems. The activities include design of the prototypes for the test campaign, numerical simulations and materials characterizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.