Abstract

A new subspace optimization method for performing aero-structural design is introduced. The method relies on a semi-analytic adjoint approach to the sensitivity analysis that includes post-optimality sensitivity information from the structural optimization subproblem. The resulting coupled post-optimality sensitivity approach is used to guide a gradient-based optimization algorithm. The new approach simplifies the system-level problem, thereby reducing the number of calls to a potentially costly aerodynamics solver. The aero-structural optimization of an aircraft wing is performed using linear aerodynamic and structural analyses, and a performance comparison is made between the new approach and the conventional multidisciplinary feasible method. The new asymmetric suboptimization method is found to be the more efficient approach when it adequately reduces the number of system evaluations or when there is a large enough discrepancy between disciplinary solution times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.