Abstract

This article presents the design, optimization and performance assessment of a novel structure-actuation morphing concept for a flying wing, enabling the flight control for straight flight and around the pitch and roll axes. The applied camber-morphing concept utilizes an optimized selectively compliant internal structure, combined with electromechanical actuators to achieve a trailing edge deflection. These deflections lead to variations of the local and global lift, permitting to control the flight of the aircraft. The aero-structural behaviour of the wing is analysed using a coupled three-dimensional aerodynamic and structural simulation tool. An optimization of the planform, aerodynamic shape, internal structure and actuation parameters is performed to attain a longitudinally stable and aerodynamically efficient flying wing. The drag increment caused by morphing is minimized through the numerical optimization, resulting in high aerodynamic efficiency across a range of flight speeds. The stiffness and morphing capabilities of the manufactured wing are characterized experimentally and are compared with the numerical predictions, and the aerodynamic and aeroelastic behaviour of the wing is investigated through wind tunnel tests. The test results indicate the ability of the flying wing to achieve sufficient variations in lift, roll and pitch to control the flight completely through camber morphing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call