Abstract

PurposeThe purpose of this paper is to present the more accurate estimation of aero-heating for the ablative 3-D noses by using the viscous shock layers and similarity of viscous boundary layer methods.Design/methodology/approachThe combination of viscous shock layer, similarity of viscous boundary layer (SVBL) methods, Park ablation and Baldwin–Lomax turbulent models is presented in this paper. The proposed method reduces computational memory and run time as compared to the time marching algorithms during flight trajectory. Therefore, the space marching algorithm and finite difference method is used, and the governing equations are transferred into curvature coordinate by using the mapping terms.FindingsThe solving for an ogive nose during flight trajectory shows that the convergence of this technique is fast as compared to the user defined function based on the fluent solvers, program to axisymmetric regular geometry code and other research. The results of this research are validated by the mentioned research studies. The relative error for the aero-heating, species concentration of the shock layer gas mixture because of dissociation/ionization of air and surface ablation results is less than 6, 5 and 11 per cent, respectively.Research limitations/implicationsThe required time for an aerodynamic design of hypersonic noses reduces as the induced aero-heating is one of the principal design parameters in standpoint aerodynamic, structural and other terms. The magnitude of this parameter, surface temperature and surface recess because of ablation should be corrected during flight trajectory.Social implicationsThe results of this research are applicable for aerospace industries.Originality/valueThe originality of this paper is 90 per cent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.