Abstract

There is a global need for efficient and environmentally sustainable processes to close the life cycle loop of waste electrical and electronic equipment (WEEE) through recycling. Conventional WEEE recycling processes are based upon pyrometallurgy or hydrometallurgy. The former is energy-intensive and generates greenhouse gas (GHG) emissions, while the latter relies on large volumes of acids and organic solvents, thus generating hazardous wastes. Here, a novel “aeriometallurgical” process was developed to recycle critical rare earth elements, namely, neodymium (Nd), praseodymium (Pr), and dysprosium (Dy), from postconsumer NdFeB magnets utilized in wind turbines. The new process utilizes supercritical CO2 as the solvent, which is safe, inert, and abundant, along with the tributyl-phosphate–nitric acid (TBP–HNO3) chelating agent and 2 wt % methanol as a cosolvent. Nd (94%), Pr (91%), and Dy (98%) extraction was achieved with only 62% iron (Fe) coextraction and minimal waste generation. Fundamental investiga...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call