Abstract

Quad-rotor unmanned aerial vehicles (UAV) are prone to external interference during aerial photography of farmland environments. For example, they are affected by external airflow and load, resulting in route deviation and irregular image overlap, which seriously affects image quality. An aerial trajectory tracking controller is designed for this aerial photography process. To ensure that a drone can fly according to the established route during the aerial photography process and meet the requirements of large-scale topographic map stereo mapping for the flight control accuracy of the drone platform, the system was divided into a full-drive subsystem and an underactuated subsystem. The full-drive subsystem uses a fast terminal sliding mode controller to ensure that the variable ([Formula: see text]) reaches the desired value. The under-actuated subsystem adopts the second-order sliding mode control was used to achieve effective position and attitude tracking of variables ([Formula: see text]). The flight controllers are derived by using Lyapunov theory. Finally, with the aerial trajectory of a farmland taken as an example, the flight path control of the UAV is simulated. Simulation results show that the designed control system can be applied to the aerial photography process of the UAV and has strong anti-system parameter perturbation, robustness and good trajectory tracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call