Abstract

Oblique photography has reached its maturity and has now been adopted for several applications. The number and variety of multi-camera oblique platforms available on the market is continuously growing. So far, few attempts have been made to study the influence of the additional cameras on the behaviour of the image block and comprehensive revisions to existing flight patterns are yet to be formulated. This paper looks into the precision and accuracy of 3D points triangulated from diverse multi-camera oblique platforms. Its coverage is divided into simulated and real case studies. Within the simulations, different imaging platform parameters and flight patterns are varied, reflecting both current market offerings and common flight practices. Attention is paid to the aspect of completeness in terms of dense matching algorithms and 3D city modelling – the most promising application of such systems. The experimental part demonstrates the behaviour of two oblique imaging platforms in real-world conditions. A number of Ground Control Point (GCP) configurations are adopted in order to point out the sensitivity of tested imaging networks and arising block deformations. To stress the contribution of slanted views, all scenarios are compared against a scenario in which exclusively nadir images are used for evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call