Abstract

Tree detection and fuel amount and distribution estimation are crucial for the investigation and risk assessment of wildfires. The demand for risk assessment is increasing due to the escalating severity of wildfires. A quick and cost-effective method is required to mitigate foreseeable disasters. In this study, a method for tree detection and fuel amount and distribution prediction using aerial images was proposed for a low-cost and efficient acquisition of fuel information. Three-dimensional (3D) fuel information (height) from light detection and ranging (LiDAR) was matched to two-dimensional (2D) fuel information (crown width) from aerial photographs to establish a statistical prediction model in northeastern South Korea. Quantile regression for 0.05, 0.5, and 0.95 quantiles was performed. Subsequently, an allometric tree model was used to predict the diameter at the breast height. The performance of the prediction model was validated using physically measured data by laser distance meter triangulation and direct measurement from a field survey. The predicted quantile, 0.5, was adequately matched to the measured quantile, 0.5, and most of the measured values lied within the predicted quantiles, 0.05 and 0.95. Therefore, in the developed prediction model, only 2D images were required to predict a few of the 3D fuel details. The proposed method can significantly reduce the cost and duration of data acquisition for the investigation and risk assessment of wildfires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.